S-Adenosyl-i-Methionine:(lso)Eugenol O-Methyltransferase and Phenylpropanoid Emission

نویسندگان

  • Jihong Wang
  • Natalia Dudareva
  • Shyam Bhakta
  • Robert A. Raguso
  • Eran Pichersky
چکیده

We have previously shown (R.A. Raguso, E. Pichersky [1995] Plant Syst Evol 194: 55-67) that the strong, sweet fragrance of Clarkia breweri (Onagraceae), an annual plant native to California, consists of 8 to 12 volatile compounds, including 4 phenylpropanoids. Although some C. breweri plants emit all 4 phenylpropanoids (eugenol, isoeugenol, methyleugenol, and isomethyleugenol), other C. breweri plants do not emit the latter 2 compounds. Here we report that petal tissue was responsible for the bulk of the phenylpropanoid emission. The activity of S-adenosyl-i-methionine: (iso)eugenol O-methyltransferase (IEMT), a nove1 enzyme that catalyzes the methylation of the para-4’-hydroxyl of both eugenol and (iso)eugenol to methyleugenol and isomethyleugenol, respectively, was also highest i n petal tissue. IEMT activity was absent from floral tissues of plants not emitting (iso)methyleugenol. A C. breweri cDNA clone encoding IEMT was isolated, and i ts sequence was shown to have 70% identity to S-adenosyl-L-methionine:caffeic acid Omethyltransferase. lhe protein encoded by this cDNA can use eugenol and isoeugenol as substrates, but not caffeic acid. Steadystate IEMT mRNA levels were positively correlated with levels of IEMT activity in the tissues, and no IEMT mRNA was observed in flowers that do not emit (iso)methyleugenol. Overall, the data show that the floral emission of (iso)methyleugenol is controlled at the site of emission, that a positive correlation exists between volatile emission and IEMT activity, and that control of the level of IEMT activity i s exerted at a pretranslational step.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of 4 Genes in Ocimum basilicum and their Relationship with Phenylpropanoids Content

Recent data showed that phenylpropanoid compound, methylchavicol is essential component of Iranian cultivars of basil. Studying their occurrence during development of plant may help to elucidate the role of phenylpropanoids in plant cell physiology. We followed the phenylpropanoids concentration and the expression of genes related to their biosynthesis during growth and development of two culti...

متن کامل

Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L). Developmental and chemotypic association of allylphenol O-methyltransferase activities.

Sweet basil (Ocimum basilicum L., Lamiaceae) is a common herb, used for culinary and medicinal purposes. The essential oils of different sweet basil chemotypes contain various proportions of the allyl phenol derivatives estragole (methyl chavicol), eugenol, and methyl eugenol, as well as the monoterpene alcohol linalool. To monitor the developmental regulation of estragole biosynthesis in sweet...

متن کامل

Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of Stephanotis floribunda

Stephanotis floribunda (Asclepediaceae), a plant that grows in Madagascar and is now a common house plant, emits a number of volatiles from its flowers. Its floral scent has been noted to increase in intensity during the night. At this time prominent scent compounds include benzyl alcohol, benzyl acetate, benzyl benzoate, eugenol, α-farnesene, linalool, linalool oxide, methyl benzoate (MBA), me...

متن کامل

S-adenosyl-L-methionine:magnesium-protoporphyrin IX O-methyltransferase from Rhodobacter capsulatus: mechanistic insights and stimulation with phospholipids.

The enzyme BchM (S-adenosyl-L-methionine:magnesium-protoporphyrin IX O-methyltransferase) from Rhodobacter capsulatus catalyses an intermediate reaction in the bacteriochlorophyll biosynthetic pathway. Overexpression of His(6)-tagged protein in Escherichia coli resulted in the majority of polypeptide existing as inclusion bodies. Purification from inclusion bodies was performed using metal-affi...

متن کامل

Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain.

The Flavivirus NS5 protein possesses both (guanine-N7)-methyltransferase and nucleoside-2'-O methyltransferase activities required for sequential methylation of the cap structure present at the 5' end of the Flavivirus RNA genome. Seventeen mutations were introduced into the dengue virus type 2 NS5 methyltransferase domain, targeting amino acids either predicted to be directly involved in S-ade...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002